Thermal Barriers and Ignition Barriers for the Spray Polyurethane Foam Industry

To download copies of this publication, visit www.sprayfoam.org.

©SPFA 2016
3927 Old Lee Highway, Suite 101B
Fairfax, VA 22030
(800) 523-6154
www.sprayfoam.org

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SPFA, 3927 Old Lee Highway, Suite 101B, Fairfax, VA 22030.
TABLE OF CONTENTS

ABOUT SPRAY POLYURETHANE FOAM ALLIANCE (SPFA) ... 3
DISCLAIMER .. 3
DOCUMENT HISTORY .. 3
TECHNICAL OVERSIGHT COMMITTEE .. 4
 Mission Statement ... 4
 Policy Statement ... 5
Why Do Codes Require Thermal or Ignition Barriers? ... 6
What is a Thermal Barrier? .. 6
What is an Ignition Barrier? .. 7
Where is a Thermal Barrier Required? .. 8
Where is an Ignition Barrier Permitted? .. 8
Selection of Thermal Barriers ... 10
Selection of Ignition Barriers ... 11

Appendix A - Referenced Standards .. 12
Appendix B - Definitions and Acronyms .. 14
Appendix C - Examples of Constructions .. 16
ABOUT THE SPRAY POLYURETHANE FOAM ALLIANCE (SPFA)

Founded in 1987, the Spray Polyurethane Foam Alliance (SPFA) is the voice, and educational and technical resource, for the spray polyurethane foam industry. A 501(c)6 trade association, the alliance is composed of contractors, manufacturers, and distributors of polyurethane foam, related equipment, and protective coatings; and who provide inspections, surface preparations, and other services. The organization supports the best practices and the growth of the industry through a number of core initiatives, which include educational programs and events, the SPFA Professional Certification Program, technical literature and guidelines, legislative advocacy, research, and networking opportunities. For more information, please use the contact information and links provided in this document.

DISCLAIMER

NOTE: This document was developed to aid building design professionals in choosing spray-applied polyurethane foam systems. The information provided herein, based on current customs and practices of the trade, is offered in good faith and believed to be true, but is made WITHOUT WARRANTY, EITHER EXPRESS OR IMPLIED, AS TO FITNESS, MERCHANTABILITY, OR ANY OTHER MATTER. SPFA DISCLAIMS ALL LIABILITY FOR ANY LOSS OR DAMAGE ARISING OUT OF ITS USE. Individual manufacturers and contractors should be consulted for specific information. Nominal values which may be provided herein are believed to be representative, but are not to be used as specifications nor assumed to be identical to finished products. SPFA does not endorse the proprietary products or processes of any individual manufacturer, or the services of any individual contractor.

DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Sections Modified</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 2015</td>
<td>All</td>
<td>Administrative changes</td>
</tr>
<tr>
<td>August 2016</td>
<td>All</td>
<td>Technical and editorial updates to address new terminology for ignition and thermal barriers; update code references.</td>
</tr>
</tbody>
</table>
TECHNICAL OVERSIGHT COMMITTEE

MISSION STATEMENT

The mission of the Technical Committee is to provide a wide range of technical service to the Spray Polyurethane Foam (SPF) industry such as, but not limited to:

1. Review existing documents and serve as a clearing house to ensure the “Continuity of Value” of technical information published by SPFA and others concerning the products and services to the SPF industry;
2. Review, research, develop, and issue documents concerning new products, systems and services; and
3. To identify, explore, develop, and communicate an understanding of technical issues facing the SPF industry.

Participating Members

<table>
<thead>
<tr>
<th>Participating Members</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Morrison (Chair) Deer Ridge Consulting</td>
<td>John Hatfield Penta Roofing Consultants</td>
</tr>
<tr>
<td>Eric Banks BASF Corporation</td>
<td>Robert Smith Invista</td>
</tr>
<tr>
<td>Jose Luna Bayer Materials Science</td>
<td>David Mulkey Invista</td>
</tr>
<tr>
<td>John Linnell Bayer Materials Science</td>
<td>John Stahl Preferred Solutions, Inc.</td>
</tr>
<tr>
<td>Eric Machemer Foam Run</td>
<td>Xuaco Pascal Honeywell</td>
</tr>
<tr>
<td>Bruce Schenke BASF Corporation</td>
<td>Mary Bogdan Honeywell</td>
</tr>
<tr>
<td>James Andersen BASF Corporation</td>
<td>Joshua Ackerman Huntsman</td>
</tr>
<tr>
<td>Chuck Skalski Gaco Western</td>
<td>John Evans Icynene</td>
</tr>
<tr>
<td>Mac Sheldon Demilec</td>
<td>Peter Birkbeck Icynene</td>
</tr>
<tr>
<td>Chris Porter Bio-Based Insulation</td>
<td>Mason Knowles Mason Knowles Consulting</td>
</tr>
<tr>
<td>Jay Zhang Convenience Products</td>
<td>Jason Hoerter NCFI Polyurethanes</td>
</tr>
<tr>
<td>Tony Leonard ER Systems</td>
<td>Jack Moore West Roofing Systems, Inc.</td>
</tr>
<tr>
<td>Stuart Hayes Evonik-Goldschmidt Corporation</td>
<td>Steve Crain The Dow Chemical Company</td>
</tr>
<tr>
<td>Ray Geiling Evonik-Goldschmidt Corporation</td>
<td>Don Lenaker</td>
</tr>
</tbody>
</table>
POLICY STATEMENT

It is the policy and recommendation of the SPFA (Spray Polyurethane Foam Alliance) that spray polyurethane foams installed within the interior of buildings be covered with a thermal or ignition barrier as soon as possible after the initial application, except as an assembly specifically approved by a building code authority based on fire tests specific to the application.
WHY DO CODES REQUIRE THERMAL OR IGNITION BARRIERS?

SPF (spray polyurethane foam), like most other organic materials, is combustible. SPFs are formulated with flame retardants to meet the requirements of various construction codes and performance standards. Some common fire tests are ASTM E84, UL 723 and others; however, the flame spread and smoke developed indexes from these tests are used solely to measure and describe properties of products in response to heat and flame under controlled laboratory conditions. The numerical flame spread and smoke developed indexes are not intended to reflect hazards presented by SPFs or any other material under actual fire conditions.

When exposed to fire sources, such as trash fires, welding arcs, cutting torches or red-hot metal, unprotected SPF can ignite and may result in a flash fire. Although burning SPF will form a surface layer of less flammable char, the initial burning can produce combustible gases and black smoke. In confined interiors, these combustible gases can accumulate and ignite, resulting in flashover, a dangerous fire situation. Under these conditions, additional foam and other combustibles can become involved in the fire, creating additional combustible gases and feeding the fire.

For these reasons, and to allow sufficient time for occupants to escape a fire, model building codes require SPF to be covered by thermal barriers or ignition barriers, or to have the SPF assemblies meet large-scale fire tests as described in this document.

Note 1: Exterior applications of SPF, such as roof systems or exterior wall assemblies, are subject to different requirements under the model building codes, such as NFPA 285, testing and are not included in this document (SPFA 126).

WHAT IS A THERMAL BARRIER?

A thermal barrier is a material installed between foam plastics (including SPF) and the interior of the building which is designed to delay the temperature rise of the foam during a fire situation and to delay or prevent the foam's involvement in a fire. The IBC (*International Building Code*) and the IRC (*International Residential Code*) define approved thermal barriers (“15-minute thermal barriers”) as:
• ½ inch (12.7 mm) gypsum wallboard;
• 23/32-inch (18.2 mm) wood structural panel (IRC only); or
• a material that is tested in accordance with and meets the acceptance criteria of both
 the temperature transmission fire test and the integrity fire test of NFPA 275

NFPA 275 requires two (2) tests:

1. Temperature Transmission Fire Test (Part I) wherein the temperature rise of the
 unexposed surface of the barrier material is limited within the test standard; and
2. Integrity Fire Test (Part II) to establish that the barrier material will sufficiently
 remain in place during a fire scenario by complying with one of the following 15-minute fire test
 standards: NFPA 286, UL 1715, FM 4880 or UL 1040.

Many assemblies without thermal barriers have earned various building code acceptances as an
alternate to the use of thermal barriers over SPF based on large-scale fire testing. The assembly,
consisting of either the exposed foam plastic or the foam plastic with a fire-protective product,
is tested using one of the following procedures and termed an “alternative thermal barrier
assembly”:

• NFPA 286
• UL 1715
• FM 4880
• UL 1040

WHAT IS AN IGNITION BARRIER?
Model building codes include a specific exception to the thermal barrier requirement in attics
and crawlspaces where entry is made only for repairs or maintenance (IRC) or for the service of
utilities (IBC). In these locations, the foam plastic insulation must be separated from the attic or
crawlspace using an ignition barrier. Ignition barriers do not provide as much fire protection as
thermal barriers but are considered acceptable for attic and crawlspaces where entry is limited.

Table 1 lists the prescriptive ignition barriers identified in the model building codes:
Table 1: Prescriptive Ignition Barriers Under the 2015 IBC and 2015 IRC

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness</th>
<th>2015 IBC</th>
<th>2015 IRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Attics and Crawlspaces</td>
<td>Attics</td>
</tr>
<tr>
<td>Mineral fiber insulation</td>
<td>1½ inch (38 mm)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Wood structural panels</td>
<td>¾ inch (6.4 mm)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Particleboard</td>
<td>thickness varies with code</td>
<td>¼ inch (6.4 mm)</td>
<td>3/8 inch (9.5 mm)</td>
</tr>
<tr>
<td>Hardboard</td>
<td>¾ inch (6.4 mm)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Gypsum board</td>
<td>3/8 inch (9.5 mm)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Corrosion-resistant steel</td>
<td>base metal thickness of 0.016 inch (0.406 mm)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Cellulose insulation, spray-applied, self-supporting</td>
<td>1½ inch (38 mm)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Fiber-cement panel, soffit or backer board</td>
<td>¾ inch (6.4 mm)</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Note: Table 1 is based on the 2015 IBC and 2015 IRC. Permissions under other code editions may vary.

Building code authorities may accept alternative ignition barrier assemblies based on large-scale tests and acceptance criteria such as that described in AC377, Appendix X. (On attic floors only, ASTM E970, as outlined in AC377, may be used to qualify alternative ignition barrier assemblies.)

Note 2: A thermal barrier or alternative thermal barrier assembly is still required between occupied interior spaces and the attic and the crawlspace. The ignition barrier exception is only applicable to the SPF surfaces facing the attic and crawlspace.

WHERE IS A THERMAL BARRIER REQUIRED?

All model building codes require that SPF, with some exceptions, must be separated from the interior of the building by an “approved thermal barrier.” Therefore, unless an exception applies, all interior SPF applications are required to be covered with an approved thermal barrier or be part of an approved alternative thermal barrier assembly.

Exceptions to the thermal barrier requirement include:
- Exterior applications as part of certain tested and classified roof assemblies.
- Certain masonry or concrete constructions.
- Certain attics and crawlspaces (see discussion under “Where Is an Ignition Barrier Permitted?”).
- Sill plates and joist headers or rim joists limited to certain SPF, at certain thicknesses, in Type V construction.
• Specifically-approved assemblies based on large scale tests.
• Others as provided by the model building codes.

Careful review of the specific code requirements on a case-by-case basis is recommended.

WHERE IS AN IGNITION BARRIER PERMITTED?

The IBC and IRC permit the use of an ignition barrier as an alternative to installing a thermal barrier in attics and crawlspaces where entry is made only for repairs and maintenance (IRC) or for the service of utilities (IBC) [see Note 3 below]. Therefore, in such attics or crawlspaces, SPF surfaces need not be covered with a thermal barrier provided it is (1) covered with a prescriptive ignition barrier; or (2) part of an approved alternative ignition barrier assembly, such as those tested in accordance with AC377, Appendix X (or ASTM E970 for attic floors only).

Note 3: Model building codes allow an exception to the thermal barrier requirement in attics and crawlspaces where entry is made only for repairs or maintenance (IRC) or for the service of utilities (IBC). This language is often misunderstood and misinterpreted by designers, builders, SPF applicators, and building officials alike.

While the ultimate decision is left to the discretion of the local code authority, ICC Staff and ICC-ES engineers offer the following conditions that would determine if the space is entered only for repairs, maintenance, or service of utilities:

• Limited access (hatch, small door, etc.)
• Utilities within the space including, but not limited to, HVAC equipment, ductwork, electrical lines, plumbing, wiring of any type (telephone, Internet, cable, security), radiant heating systems, sprinkler systems, etc.
• Possibility that any utility as described above may be installed in the future

Based on this interpretation of the building code, the following criteria are often applied to determine appropriate fire protection for SPF surfaces in attics and crawlspaces:

• Thermal Barrier: Thermal barriers are required whenever the attic or crawlspace is used or could reasonably be used as an auxiliary living space or for storage. Criteria for such space may include: ease of entry (such as fixed stairs), and presence of usable flooring (other than minimal pathways for equipment access). The presence of any of the previous criteria does not automatically require thermal barrier protection, but rather offers guidance on what a code official might consider when determining the use of the space.
• Ignition Barrier: Ignition barriers are required whenever the attic or crawlspace is not or could not reasonably be used as an auxiliary living space or for storage. Criteria may include difficulty of entry (for example, a hatch or opening not easily
accessible) and lack of flooring.

- No Barrier: Barriers are not required whenever no access exists to the space and the space is not connected and does not communicate with other spaces. (See Note 2 regarding thermal barriers for ceiling and floor treatments.

Refer to Appendix C Examples of Constructions for illustrations.

SELECTION OF THERMAL BARRIERS

Generally, there are two options:

1. Thermal Barriers: The IBC and IRC specifically identify ½-inch gypsum wall board and 23/32-inch wood structural panel (IRC only) as thermal barriers. Additionally, these codes define materials which have been tested in accordance with NFPA 275 (parts I and II) as thermal barriers. Typical tested thermal barrier materials include:
 - Spray-applied cementitious materials
 - Spray-applied cellulosic materials
 - Portland cement plaster
 - Other various proprietary materials

2. Alternative Thermal Barrier Assemblies: SPF may be covered with various fire-protective products or left exposed provided the assembly has been specifically approved on the basis of large-scale fire testing representing the actual end-use configuration. Alternative thermal barrier assemblies may have a currently valid evaluation report. Local code officials are permitted to allow the use of an alternative thermal barrier assembly which has not been issued an evaluation report provided that data satisfactory to the code official is submitted for approval. IRC and IBC identify the following tests for alternative thermal barrier assemblies:
 - NFPA 286
 - UL 1715
 - UL 1040
 - FM 4880

Evaluation reports can assist local code officials in determining the code compliance of tested thermal barriers and alternative thermal barrier assemblies. Local code officials are permitted to approve the use of a tested thermal barrier or alternate thermal barrier assembly that has not been issued an evaluation report provided that data satisfactory to the code official is submitted for approval.
Alternative ignition barrier assemblies tested under Appendix X or ASTM E970 are NOT alternative thermal barrier assemblies.

SELECTION OF IGNITION BARRIERS

Generally, there are two options:

1. Prescriptive ignition barriers: These are specifically named in the IBC and IRC by type and thickness (for a list, see Table 1 in the “What is an Ignition Barrier” section above).

2. Alternative Ignition Barrier Assemblies: SPF may be covered with various fire-protective products or left exposed provided the assembly has been specifically approved by the local code official on the basis of Appendix X or ASTM E970 (attic floors only) testing. Proof of appropriate testing supported by an evaluation report may be required. Additional limitations (to those under the codes for prescriptive ignition barriers) may apply to alternative ignition barrier assemblies (see Note 4).

Note 4: Appendix X limits the use of alternative ignition barrier assemblies in attic and crawl spaces as follows [cited from AC-377 version approved April 2016]:

a. Entry to the attic or crawl space is only to service utilities, and no storage is permitted.

b. There are no interconnected attic or crawl space areas.

c. Air in the attic or crawl space is not circulated to other parts of the building.

d. Attic ventilation is provided when required by IBC Section 1203.2 or IRC Section R806, except when air-impermeable insulation is permitted in unvented attics in accordance with the 2015 IBC Section 1203.3, 2012 IRC Section R806.5, 2009 IRC Section R806.4. Under-floor (crawl space) ventilation is provided when required by 2015 IBC Section 1203.4 (2012, 2009 and 2006 IBC Section 1203.3) or IRC Section R408.1, as applicable.

e. The foam plastic insulation is limited to the maximum thickness and density tested.

f. Combustion air is provided in accordance with IMC Section 701 (2006 IMC Sections 701 and 703).

g. The installed coverage rate or thickness of coatings, if part of the insulation system, shall be equal to or greater than that which was tested.

Unless otherwise approved by the local code official, the following limitations apply to alternative ignition barrier assemblies:

1. SPF must be installed at thicknesses and density equal to or less than tested.

2. Fire-protective materials must be installed at thicknesses equal to or greater than tested.

3. SPF formulations and fire-protective materials must conform to that which was tested.
Caution: Just because a material is advertised as a “thermal barrier”, “ignition barrier” or an assembly not requiring a thermal or ignition barrier, it does not mean that it has been approved by a local code official. Ask for an evaluation report, test data, local code approvals, listings or other written indications of acceptability under the code to be sure that the product or assembly selected offers the fire protection that the code requires.
APPENDIX A

Referenced Standards

ASTM E84: Standard Test Method for Surface Burning Characteristics of Building Materials

FM 4880: Approved Standard for Class I Fire Rating of Insulated Wall or Wall and Roof/Ceiling Panels, Interior Finish Materials or Coatings and Exterior Wall Systems.

NFPA 286: Standard Methods of Fire Tests for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth (Note: NFPA 286 does not include pass/fail criteria within it; the criteria are specifically defined within the IBC and IRC). Battery Park, MA: National Fire Protection Association.

UL 723: Standard for Test for Surface Burning Characteristics of Building Materials

UL 1715: Standard for Fire Test of Interior Finish Material.

UL 1040: Standard for Fire Test of Insulated Wall Construction.
APPENDIX B

Definitions and Acronyms

15-Minute Thermal Barrier: (see Thermal Barrier)

AC: Acceptance Criteria are developed by the ICC-ES technical staff in consultation with the report applicant and with input from interested parties. Acceptance Criteria are used as a guide to develop evaluation reports.

Alternative Ignition Barrier Assembly: An assembly consisting of either the exposed SPF or the SPF with a fire-protective product that complies with the conditions of acceptance of Appendix X or for attic floors, complies with ASTM E970.

Alternative Thermal Barrier Assembly: An assembly consisting of either the exposed SPF or the SPF with a fire-protective product that complies with the Special Approval section of the IBC or the Specific Approval section of the IRC. Referenced test procedures include NFPA 286, UL 1715, FM 4880 or UL 1040.

Appendix X: A fire test protocol based on, but less severe than, NFPA 286 to qualify alternative ignition barrier assemblies. Details of this test protocol may be found in AC377.

Approved: Acceptable to the building official.

Building Official: The officer or other designated authority charged with the administration and enforcement of the building code.

Evaluation Report: Report provided by an accredited or qualified third-party reporting results of technical evaluations of data for compliance with a standard or set of criteria. In the context of buildings and construction, these reports commonly evaluate compliance of a product or assembly with the relevant requirements of the construction codes, consensus standards or acceptance criteria. Evaluation reports are used to help confirm code-compliance of products and assemblies.

ICC: International Code Council (www.iccsafe.org) The ICC formed in 1994 by the merger of BOCA, ICBO and SBCCI to promulgate a common set of model building codes. Codes developed by the ICC are commonly referred to at the I-CODES.

Ignition Barrier: A building code permitted protective covering applied over foam plastic insulations, including SPF, in attics and crawlspaces to increase the time it takes for the foam plastic to become involved in a fire. Ignition barriers do not provide as much fire protection as thermal barriers. The building code restricts the use of ignition barriers to attics and crawlspaces of limited access (check the local building code for specific requirements).

NFPA: National Fire Protection Association (www.nfpa.org), is a global nonprofit organization, established in 1896, devoted to eliminating death, injury, property and economic loss due to fire, electrical and related hazards.

Thermal Barrier: A material installed over spray polyurethane foam (and other foam plastics) designed to slow the temperature rise of the foam during a fire situation and delay its involvement in the fire. With certain exceptions, building codes require that SPF be separated from interior spaces with a thermal barrier. Building codes define thermal barriers as those specifically listed in the code (such as ½-inch gypsum wallboard) or those tested in accordance with NFPA 275 (meeting both the Temperature Transmission Fire Test and the Integrity Fire Test).
APPENDIX C

Examples of Constructions

In Figures C1-C7, the following terms are interchangeable:

1. Alternative ignition barrier assemblies with ignition barriers;
2. Alternative thermal barrier assemblies with thermal barriers.

Ignition barriers and alternative ignition barrier assemblies are NOT interchangeable with thermal barriers and alternative thermal barrier assemblies.
FIGURE C1 – Thermal and ignition barrier requirements for unvented attics and crawlspaces having limited access and no storage

FIGURE C2 – Thermal barrier requirements for unvented attics and crawlspaces with unlimited access or used for storage
FIGURE C3 – Thermal and ignition barrier requirements for vented attics and crawlspaces with limited access

FIGURE C4 – Thermal barrier requirements for vented attics and crawlspaces with unlimited access
FIGURE C5 – Thermal barrier requirements for areas having no access adjacent to occupied spaces

FIGURE C6 – Thermal barrier requirements for interstitial space with suspended panel ceilings which are not thermal barriers

FIGURE C7 – Thermal and ignition barrier requirements for interstitial space with ½” gypsum board ceiling or other thermal barrier